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NICOLAS HUANG1 AND DANIEL BONN1,2
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We study the rheology of a granular paste, i.e. a dense suspension of non-Brownian
particles, quantitatively at steady state, in a cylindrical Couette cell. Previous studies
have shown a discrepancy between local and global measurements of the viscosity for
these materials, making it impossible to predict their resistance to flow. Using both
MRI investigation techniques and classical rheology studies, we show that agreement
between local and global measurements can be obtained, provided the migration
of particles inside the gap is taken into account. As found by Leighton & Acrivos
(J. Fluid Mech. vol. 181, 1987, p. 415), the migration leads to a particle density
gradient in the flow, the highly sheared regions being less dense in particles. Here,
by comparing the local viscosity and particle density measurements from MRI with
the macroscopic relation between viscosity and the volume fraction, it is shown that
global and local measurements agree with each other. This consequently allows us to
define a viscosity for dense suspensions.

1. Introduction
The seemingly simple question of whether a constitutive equation can be defined

for granular systems in general does not appear to have a simple answer (GDRMiDi
2004; Jaeger, Nagel & Behringer 1996; Mueth et al. 2000), in spite of the fact that it is
necessary, for a large number of applications, to predict the resistance to flow. Because
of the volume conservation that is not necessarily present for dry granular materials,
perhaps the simplest example of granular flow is that of dense suspensions, i.e. pastes
or slurries, which are of crucial importance in industrial and civil engineering, and in
geophysics, for example, for the understanding of the behaviour of cement, concrete,
mudflows, mining slurries, debris flows, lavas, drilling fluids, etc. (Bagnold 1954; Hunt
et al. 2002; Herminghaus 2005).

For dense suspensions, from the comparison between global (rheological)
measurements of the viscosity and local measurements using velocity profiles measured
with an MRI (magnetic resonance imaging) scanner, it has been concluded that there
is no simple constitutive equation relating shear stress to shear rate only (Huang
et al. 2005). This is general for granular media, and is the main problem that needs
to be solved (Huang et al. 2005; GDRMiDi 2004; Jop, Forterre & Pouliquen 2005;
Cassar, Nicolas & Pouliquen 2005; Jop, Forterre & Pouliquen 2006). Very recently, a
constitutive law for dry dense granular flows has been proposed, following a visco-
plastic approach to capture granular flow properties (Jop et al. 2006). However, for
dense suspensions, no constitutive equation has yet been formulated.
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Here we show that for a dense suspension in shear flow, global and local
measurements of the viscosity can be made to agree with each other, and that
consequently a viscosity can be defined for the granular system. The ‘missing link’
between the macroscopic and local measurements is found to be the coupling between
the flow and the concentration. Flow-induced migration of the particles leads to a
concentration gradient in the flow; such particle migration in concentrated suspensions
was discovered first by Leighton & Acrivos (1987). Using MRI to measure the gradient
in particle density, we find that, due to the flow, the material is dilated where it flows
rapidly, and compacted where the flow is slow (Ovarlez, Bertrand & Rodts 2006). This
results in a local variation of the viscosity; if this is taken into account, agreement
with macroscopic rheology measurements is obtained, thus allowing the viscosity of
the dense suspension to be defined.

2. Experimental
We study the rheological behaviour of a granular paste (a dense suspension)

composed of non-Brownian spherical monodisperse particles immersed in a
Newtonian fluid. The granular material is constituted of spherical monodisperse
polystyrene beads (diameter 290 µm ± 30 µm, density 1.04 g cm−3). We use a Rhodorsil
silicone oil as the interstitial fluid (viscosity ηs = 20 mPa s, density 0.96 g cm−3). The
volume fraction is fixed at 58 % for the experiments discussed here. Such a high volume
fraction limits sedimentation and creaming effects. Furthermore, the suspensions
are strongly pre-sheared before any measurements. In our previous work (Huang
et al. 2005), careful measurements at density-matched conditions were performed.
These measurements provided results that were identical to within the experimental
uncertainty with experiments on systems with a slight density mismatch, as is the case
of the dense suspensions in this study (polystyrene beads in Rhodorsil oils). With all
these precautions (dense suspensions, pre-shear, comparison with previous isodensity
data), our data were reproducible and not influenced by spurious density effects.

MRI experiments were performed with a velocity controlled ‘MRI-rheometer’ from
which we directly obtain the local velocity distribution in a Couette geometry (inner
cylinder radius Ri = 4.15 cm, outer cylinder radius Re = 6 cm; height 11 cm). Magnetic
resonance imaging was performed with a Bruker set-up described in detail in Raynaud
et al. (2002) and Rodts et al. (2004). The inner cylinder is driven at velocity Ωi ranging
between 0.01 and 100 r.p.m., corresponding to velocities Vi from 0.004 to 43.5 cm s−1,
and to overall shear rates between 0.002 and 23.5 s−1. For technical reasons, Ωi is
either between 0.01 and 9 r.p.m., or between 1 and 100 r.p.m. We pre-shear the material
at the maximum rotational speed available (Ωi = 9 or 100 r.p.m.), for 30 s. As we will
explain in detail below, this set-up allows local measurement of the viscosity, as well
as the particle concentration in the flowing paste.

Classical rheology experiments are carried out with a vane-in-cup geometry on a
commercial rheometer (Reologica Stresstech) that imposes either the stress or the
shear rate. The vane geometry is equivalent to a cylinder with a rough lateral surface,
with a roughness comparable with the scale of the particles of the sheared granular
material itself (Raynaud et al. 2002; da Cruz 2004). A rough surface reduces the
slipping of granular materials which occurs on smooth surfaces (Larson 1999). For
the same reason, the inside of the cup is covered with a layer of granular particles
using double-sided adhesive tape. The vane has a diameter of 16 mm and the cup has
a diameter of 26 mm. The gap size is therefore 5 mm. For the global measurements,
we choose to use a small-gap Couette cell, in order to minimize the effects of the
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Figure 1. Velocity profiles in a Couette geometry at different rotational velocities. The
vertical line on the left corresponds to the inner cylinder.

concentration gradient. In two different series of experiments we measure both the
stress as a function of the shear rate, and the viscosity as a function of the volume
fraction of particles, by preparing pastes with different quantities of beads and silicon
oil. Before each experiment, the material is pre-sheared for 30 s at 30 s−1 to obtain a
reproducible initial state. This set-up allows the measurement of the global viscosity.

3. Results
3.1. Comparison between global (macroscopic) and local measurements

We first compare the macroscopic viscosity measurements taken from the small-gap
Couette cell to the local measurements. Concentration gradients are usually stronger
in a large-gap geometry, leading to a viscosity that decreases in time, and in steady
state to a lower viscosity and a highly inhomogeneous material. The viscosity in
the small-gap Couette cell did not show a significant time dependence. The local
measurements of the viscosity are obtained from the velocity profiles (figure 1) of the
flowing granular material in a wide-gap Couette cell inserted in a magnetic resonance
imaging (MRI) appparatus. For low velocities (velocities below a critical velocity Vc),
only part of the material is sheared. There are then two distinctive bands in the gap: a
sheared band and a band where the material is, to within the experimental accuracy,
motionless. This is a direct observation of shear banding in our granular material.

In these MRI measurements, if we suppose that our material is a homogeneous
continuum medium, the shear stress varies within the gap, and the stress σ at a given
radial position r as a function of both the applied torque C and the fluid height
h follows from momentum balance. Note that the MRI shear cell does not allow
measurement of the stress. To measure the stress at r =Ri , a classical shear cell of
the same size as the MRI cell is used. The same velocities as in the MRI experiments
are applied to the inner cylinder, and the corresponding stresses on this cylinder σi

are measured.
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Figure 2. Flow curves (shear stress versus shear rate) calculated from the velocity profile and
measured macroscopically. The paste has a volume fraction φ of 58 %. The value of the shear
rate γ̇ in the macroscopic experiment (rheology data) is taken at r = Ri . On the macroscopical
curve there is a horizontal plateau at low shear rates. The macroscopic (global) measurements
are taken from the small-gap Couette cell, in order to minimize the effects on the concentration
gradient.

We can reasonably assume that, even though granular force chains should be
present in the sheared granular system, momentum conservation is likely to hold, at
least on average. Therefore, the momentum balance equation gives the local stress in
the MRI cell as

σ = σi

R2
i

r2
. (3.1)

The magnitude of the shear rate can be deduced from the velocity profile vθ (r) as,
in a cylindrical Couette cell,

γ̇ = r
∂

∂r

(vθ

r

)
. (3.2)

Thus r can be eliminated from these two equations to deduce the constitutive equation
of the fluid in simple shear, i.e. the relation between σ and γ̇ .

The local and global flow curves are plotted in figure 2, and show that, first, the
data are not consistent between different MRI experiments, and second, they are very
inconsistent with the rheology data (Huang et al. 2005). On the macroscopic flow
curve, note the presence of a horizontal plateau at low shear rates. This precludes
the existence of a simple constitutive equation relating shear stress to shear rate only.
These results can be understood if we combine the momentum balance equation with
the roughly exponential decay of the velocity profile, and calculate a local viscosity
from the ratio of the two. It then follows that this local viscosity is small near the
moving inner cylinder, and increases with increasing distance from the moving wall.
Since in these dense granular systems the viscosity is strongly dependent on the
particle concentration, this suggests that the particle concentration is slightly smaller
near the moving wall where the shear rate is the highest, and slightly larger near the
stationary wall, where the shear rate is very small. Because of the inhomogeneity,
the material is not necessarily the same throughout the gap: the particle density may
vary. To see whether this is indeed true, we will calculate the spatial variation of the
viscosity from the MRI data, and measure the spatial variation of the particle volume
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Figure 3. Viscosity inside the gap (MRI cell). The lines correspond to the exponential fit to
the velocity profiles. The symbols correspond to the data taken from the velocity profiles. The
paste has a volume fraction φ of 58%. The vertical line on the left corresponds to the inner
cylinder.

fraction, also with the MRI. These results can then be compared to macroscopic
measurements of the volume-fraction dependence of the viscosity.

3.2. Viscosity profiles inside the gap

The viscosity profiles inside the gap can be computed directly from the velocity
profiles of figure 1. We previously found that the velocity profiles can be collapsed
onto a single universal curve with the rescaled coordinates V/Vi and (r − Ri)/dc,
where dc is the extent of the material that is sheared (Huang et al. 2005). A fit gives

V

Vi

= exp

(
−α

r − Ri

dc(Vi)

)
, (3.3)

with α =5.6 (Huang et al. 2005); γ̇ (r) can be obtained from this equation and from
(3.2). It follows that

γ̇ (r) = Vi

(
α

dc

+
1

r

)
exp

(
−α

r − Ri

dc

)
. (3.4)

Finally, using (3.1), the viscosity η(r) = σ (r)/γ̇ (r) inside the gap is

η(r) =
σ (r)

γ̇ (r)
=

R2
i

r

dc

dc + αr

σi

Vi

exp

(
α

r − Ri

dc

)
. (3.5)

If V � Vc (Vc ≈ 1 cm s−1 being the critical velocity), the whole gap is sheared and
dc = e = 1.85 cm (Huang et al. 2005). Vc is thus the critical rotation velocity above
which no shear banding is observed. For V < Vc, dc(Vi) shows a power-law behaviour
with an exponent ndc

= 0.43.
Figure 3 shows the viscosity profiles η(r) inside the gap. The experiments thus show

that if no shear banding is observed (i.e. V � Vc), the velocity profiles for different
speeds are very similar. On the other hand, if shear banding is observed, the viscosity
profiles are significantly above those taken for V greater than Vc.
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Figure 4. Density profile of the paste in the gap of the MRI Couette cell for different rotation
speeds of the inner cylinder (Ovarlez et al. 2006). The paste has a volume fraction φ of 58 %.

3.3. MRI measurements of the density profile inside the gap

The results from the viscosity profiles therefore show that the viscosity is lower near
the moving inner cylinder, and higher at the stationary outer wall. This suggests that
a density gradient develops in the flow. We therefore measured the concentration
profile with the MRI scanner; at the chosen frequency, the MRI is only sensitive to
the protons present in the silicon oil (not in the polystyrene beads), and the MRI
signal is directly proportional to the proton density (Ovarlez et al. 2006). By a careful
calibration with only the silicon oil, the volume fraction of beads can be obtained
directly throughout the gap of the Couette cell, with a resolution similar to that for
the velocity profiles.

Figure 4 shows the measured density profiles for different rotation speeds of the
inner cylinder. A surprising observation is that the density profiles are the same to
within the experimental accuracy for different rotation speeds. This is most likely to
be due to the pre-shear: the density profile is established after the pre-shear (as shown
with the MRI), and does not change significantly thereafter. This seems reasonable
for the smallest rotation rates; however, the pre-shear having been at 9 r.p.m., for the
rotation rates of 15 and 25 r.p.m. one might have expected a larger gradient. The
data, again taken in steady state, therefore suggest that for high enough rotation
rates the density profile no longer changes with the rotation rate. No changes in the
density profiles were observed, even after after several hours (Ovarlez et al. 2006).
These authors show that the density profile is irreversibly established by the pre-
shear and even observe the same concentration profile for a 9 r.p.m. pre-shear as
for a 100 r.p.m. pre-shear (Ovarlez et al. 2006). Comparing our results to those of
Leighton & Acrivos (1987) is difficult, since they discuss the shear-induced migration
out of the gap into a particle reservoir. In the MRI Couette cell there is also a
reservoir (below the rotating inner cylinder), but the observation that the density
profiles are independent of the macroscopically imposed rotation rate shows that this
effect is negligible for our experiments. This does not however rule out a migration
from the gap into the reservoir during the pre-shear. However the observation that
the average concentration measured with the MRI remains close to the 58 % volume
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Figure 5. Flow curve (shear stress versus shear rate) at an imposed macroscopic shear rate
in a linear–linear scale, with a linear fit. The paste has a volume fraction φ of 58 %. For the
stress range we are interested in here (above the critical stress), the viscosity can be considered
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fraction that was the initial state of the sample shows that this effect, if present, is
too small to be detected experimentally by the MRI.

More importantly for our purposes, the density profiles show that the particle
concentration is lowest near the moving wall, and increases roughly linearly within
the gap of the Couette cell. This is in qualitative agreement with the assumption that
the viscosity variation in the gap is indeed due to a gradient in particle concentration.
This link will be made quantitative below, by measuring the viscosity as a function
of the volume fraction of particles.

3.4. Viscosity as a function of the volume fraction: Krieger–Dougherty equation

The measurements of the flow curve (figure 5) show that, on a linear–linear scale,
the paste behaves almost as a Newtonian fluid; deviations from this are important at
very low shear rates due to the finite yield stress of the paste. However, for most of
the shear rate range we are interested in here, the viscosity can reasonably be taken
constant, i.e. independent of the shear rate.

This viscosity does depend very strongly on the volume fraction of particles:
figure 6 shows a comparison between the measured global viscosity and the well-
known Krieger–Dougherty model for the dependence of the viscosity ηs on the
volume fraction φ:

η = ηs

(
1 − φ

φm

)−2.5 φm

, (3.6)

with ηs the solvent viscosity and φm the random close packing (Krieger & Dougherty
1959; Larson 1999). This phenomenological model provides us with a good description
of the data. We can therefore use this model, together with the results from the density
profile, to recalculate the viscosity distribution in the large-gap Couette cell used for
the velocity and density profile measurements.
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3.5. New comparison between global and local measurements

We are now in a position to quantitatively compare the results from the local and
global measurements of the viscosity. For the local measurements, we take into
account the particle density gradient by defining σ = η(φ)γ̇ , with η(φ) depending on
the volume fraction φ. η(φ) follows the Krieger–Dougherty model (3.6) discussed
above, and φ increases linearly with r inside the gap.

The previous result for global measurements is compared to the local measurements
in figure 7, and the agreement between local and global measurements is now very
satisfactory for inner-cylinder velocities above the critical velocity, in order for the
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whole gap to be sheared. The lower rotation velocities are discussed in § 4. For this
quantitative comparison, we also need to know the wall shear stress in the Couette
geometry; there is some uncertainty in this value due to residual sedimentation effects.
This, however, only leads to a vertical translation of the MRI results and does not
change the overall shape of the flow curve. The good agreement therefore allows
a definition of the viscosity for our dense suspension in a steady-state shear flow.
Furthermore, the agreement shows that measurements in a small-gap Couette cell
allow the material and its viscosity to be characterized accurately. This is very likely
because a small gap minimizes, or even suppresses, the particle concentration gradient:
particle migration towards the outer cylinder leads to a viscosity decrease (Leighton &
Acrivos 1987). The good global–local agreement is likely to be due to the fact that
a density gradient cannot be fully developed, in a small-gap Couette geometry. This
is because the basic mechanism behind the migration is that gradients in shear rate
generate a particle flux towards the outer cylinder, which is counterbalanced by a
particle flux due to viscosity gradients. In a small-gap, large-aspect-ratio Couette cell
such as the one used here, the shear rate gradient is very small, and one may therefore
expect that the migration is also small. Experimentally, the gradient, if present in the
small gap, is not noticeable in our viscosity experiments. Thus, the local measurements
show the pertinence of measurements in gaps wide enough to have a continuous flow
(gap size of several bead diameters), but small enough to minimize migration effects.

4. Discussion
We have shown that a constitutive equation can be defined for a dense suspension

in a steady-state Couette flow. The flow of the dense suspension is governed by the
flow curve equation σ = η(φ)γ̇ . The viscosity η(φ) depends on the volume fraction φ,
and their relationship follows the Krieger–Dougherty model: η = ηs(1 − φ/φm)−2.5 φm .
It follows from the data that the particle volume fraction increases linearly with
increasing distance from the moving inner cylinder, which, quantitatively and with a
rheological investigation inside the gap (local measurements), confirms the idea that
the viscosity varies within the gap due to a flow-induced density gradient (particle
migration) (Gadala-Maria & Acrivos 1980; Leighton & Acrivos 1987; Abbott et al.
1991; Phillips et al. 1992; Wolthers et al. 1996). This result is deducted from density
profiles, viscosity profiles (deduced from experimental velocity profiles), and from
the comparison between local and global measurements (the latter performed in a
small-gap cell).

The method described in this paper still relies on the (difficult) measurement of
the density profile, and is therefore neither predictive, nor directly applicable to
other flow situations, as is necessarily the case for a ‘real’ constitutive equation. For
instance, segregation phenomena similar to those observed here but resulting from a
competition between gravity and shear have recently been observed in other (non-
isodense) dense suspensions, see Barentin, Azanza & Pouligny (2004) and Lenoble,
Sabre & Pouligny (2005). In our experiments however, sedimentation effects are
negligible and the particle migration is induced by the shear. Our way of defining a
viscosity should be applicable to both situations, as long as the concentration gradient
is known or can be measured, and the problem of particle migration appears to be
one that is much easier to tackle than that of the prediction of flow of granular
materials in general. However, the mechanisms of shear-induced migration are not
fully understood, perhaps because quantitative measurements of the density profiles
are also difficult to make. Ovarlez et al. (2006) have studied the dynamics of migration
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in detail in our system, and conclude that the dynamics is much faster than would be
expected from theoretical models for shear-induced migration, the reason for which
remains unclear for the moment. In our study, the dynamics of migration does not
influence the results as it is in steady state.

Very recently, Lagrée & Lhuillier (2006) proposed a continuum-mechanical
description for the flow of dense suspensions in a Couette cell. They consider
exactly our experimental situation, and determine the density profile resulting from a
competition between dilatancy and particle diffusion due to a gradient in suspension
viscosity, brought about by a gradient in concentration. The density profile is
determined in their work for a constant confining pressure, and they found that
the radius dependence may be somewhat weaker than the approximately linear
behaviour observed experimentally. Our experiments however were done at constant
volume fraction rather than at constant pressure. Their subsequent work (Lagrée &
Lhuillier 2006, personal communication) however shows that the form of the density
profiles is virtually unchanged when a constant volume fraction is imposed, as is the
case in the experiments. A quantitative comparison is in progress.

It should also be noted that for low velocities Vi , and notably whenever shear
banding occurs, our method does not allow a viscosity to be defined that is identical
for global and local measurements. Since the concentration profiles do not depend
on Vi , this follows directly from the observation that the viscosity profiles η(r) do
not coincide. In the region where no flow occurs, the velocity is zero (figure 2), and
consequently the viscosity infinite. Thus, localization of the flow is the first reason
why the viscosity profiles do not coincide.

The second reason is more subtle. The macroscopic flow curve (figure 2) shows that,
to a good approximation, the fluid behaviour is Newtonian at higher rotation speeds.
This approximation breaks down for Vi <Vc. For these low rotation rates, the non-
zero intercept (yield stress) in figure 6 contributes also significantly to the viscosity of
the flowing part, and as a result the viscosity is higher. More quantitatively, for this
Bingham fluid, when Vi = 0.03 cm s−1 (for example), the sheared region has an extent dc

of 0.5 ± 0.06 cm. The corresponding shear rate is therefore γ̇ = Vi/dc =0.06 ± 0.01 s−1.
The shear stress is σi = 1.5 Pa. Hence the mean viscosity for a Bingham fluid:
ηb = σi/γ̇ ≈ 25 Pa s. Supposing that the fluid is Newtonian, a direct fit to the rheology
data (figure 2) gives a mean viscosity for a Newtonian fluid of ηn ≈ 5 Pa s. There
is consequently a difference of a factor of about 5 between the viscosities of the
Newtonian and Bingham models, which can be seen in the viscosity profiles of figure
3. Thus, the fact that at very low speed the fluid should be considered as a Bingham
fluid, and not as a Newtonian fluid, is the second reason why the viscosity profile η(r)
is not independent of the rotation speed Vi , and thus the two viscosities (inside and
outside the shear band) are different.

We thank G. Ovarlez, F. Bertrand and S. Rodts for help with the MRI experiments,
and D. Lhuillier, B. Pouligny and P.-Y. Lagrée for very helpful discussions. The LPS
of the ENS is an UMR 8550 of the CNRS, associated with the universities Paris 6
and Paris 7.
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des Ponts et Chaussées, Marne-la-Vallée.

Gadala-Maria, F. & Acrivos, A. 1980 The avalanching of granular solids on dune and similar
slopes. J. Rheol. 24, 799–814.

GDRMiDi 2004 On dense granular flows. Eur. Phys. J. E 14, 341–365.

Herminghaus, S. 2005 Dynamics of wet granular matter. Adv. Phys. 54, 221–261.

Huang, N., Ovarlez, G., Bertrand, F., Rodts, S., Coussot, P. & Bonn, D. 2005 Flow of wet
granular materials. Phys. Rev. Lett. 94, 028301.

Hunt, M. L., Zenit, R., Campbell, C. S. & Brennen, C. E. 2002 Revisiting the 1954 suspension
experiments of r. a. bagnold. J. Fluid Mech. 452, 1–24.

Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev.
Mod. Phys. 68, 1259.

Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of side walls for granular surface flows:
consequences for the rheology. J. Fluid Mech. 541, 167–192.

Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature
441, 727–730.

Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of
rigid spheres. Trans. Soc. Rheol. 3, 137–152.

Lagrée, P.-Y. & Lhuillier, D. 2006 The Couette flow of dense and fluid-saturated granular media.
Eur. J. Mech. B-Fluids 25, 960–970.

Larson, R. G. 1999 In The Structure and Rheology of Complex Fluids . Oxford University Press.

Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated
suspensions. J. Fluid Mech. 181, 415–439.

Lenoble, M., Sabre, P. & Pouligny, B. 2005 The flow of a very concentrated slurry in a parallel-
plate device: Influence of gravity. Phys. Fluids 17, 073303.

Mueth, D. M., Debregeas, G. F., Karczmar, G. S., P. J. Eng, S. R. Nagel & Jaeger, H. M. 2000
Signatures of granular microstructure in dense shear flows. Nature 406, 385–389.

Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense
suspension of non-colloidal particles through MRI. J. Rheol. 50, 259.

Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. 1992 A
constitutive equation for concentrated suspensions that accounts for shear-induced particle
migration. Phys. Fluids A 4, 30–40.

Raynaud, J. S., Moucheront, P., Baudez, J. C., Bertrand, F., Guilbaud, J. P. & Coussot, P. 2002
Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior
of suspensions. J. Rheol. 46, 709–732.

Rodts, S., Bertrand, F., Jarny, S., Poullain, P. & Moucheront, P. 2004 Développements récents
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